Vogel Approximation Method (VAM)

VAM is an improved version of the least cost method that generally produces better solutions. The steps involved in this method are:

Step 1: For each row (column) with strictly positive capacity (requirement), determine a penalty by subtracting the smallest unit cost element in the row (column) from the next smallest unit cost element in the same row (column).
Step 2: Identify the row or column with the largest penalty among all the rows and columns. If the penalties corresponding to two or more rows or columns are equal we select the topmost row and the extreme left column.

Step 3: We select X_{ij} as a basic variable if C_{ij} is the minimum cost in the row or column with largest penalty. We choose the numerical value of X_{ij} as high as possible subject to the row and the column constraints. Depending upon whether a_{i} or b_{j} is the smaller of the two $\mathrm{i}^{\text {th }}$ row or $\mathrm{j}^{\text {th }}$ column is crossed out.

Step 4: The Step 2 is now performed on the uncrossed-out rows and columns until all the basic variables have been satisfied.

Example

Consider the following transportation problem

Origin	Destination				ai
	1	2	3	4	
1	20	22	17	4	70
2	24	37	9	7	50
3	32	37	20	15	110
$\mathrm{~b}_{\mathrm{j}}$	60	40	30	240	

Note: $\mathrm{a}_{\mathrm{i}}=$ capacity (supply)
$\mathrm{b}_{\mathrm{j}}=$ requirement (demand)
Now, compute the penalty for various rows and columns which is shown in the following table:

Origin	Destination					a_{i}
	1	2	3	4		
Column						
Penalty						

Look for the highest penalty in the row or column, the highest penalty occurs in the second column and the minimum unit cost i.e. c_{ij} in this column is $\mathrm{c}_{12}=22$. Hence assign 40 to this cell i.e. $x_{12}=40$ and cross out the second column (since second column was satisfied). This is shown in the following table:

Origin	Destination					
	1	2	3	4	Column Penalty	
1	20	22	$\mathbf{4 0}$	17	4	80
2	24	37	9	7	70	2
3	32	37	20	15	50	5
$\mathrm{~b}_{\mathrm{j}}$	60	40	30	110	240	
Row Penalty	4	15		8	3	

The next highest penalty in the uncrossed-out rows and columns is 13 which occur in the first row and the minimum unit cost in this row is $\mathrm{c}_{14}=4$, hence $\mathrm{x}_{14}=80$ and cross out the first row. The modified table is as follows:

\left.| Origin | Destination | | | | | ai |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | | |
| Column | | | | | | |
| Penalty | | | | | | |$\right]$

The next highest penalty in the uncrossed-out rows and columns is 8 which occurs in the third column and the minimum cost in this column is $\mathrm{c}_{23}=9$, hence $\mathrm{x}_{23}=30$ and cross out the third column with adjusted capacity, requirement and penalty values.
The modified table is as follows:

Origin	Destination					a_{i}	Column Penalty
	1	2		3	4		
1	20	22		17		0	13
			40				
2	24	37		9	7	40	17
3	32	37		20	15	50	17
b_{j}	60	$4{ }^{4}$		30	110	240	
Row Penalty	8	15		8	8		

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the second row and the smallest cost in this row is $\mathrm{c}_{24}=15$, hence $\mathrm{x}_{24}=30$ and cross out the fourth column with the adjusted capacity, requirement and penalty values. The modified table is as follows:

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the second row and the smallest cost in this row is $c_{21}=24$, hence $\mathrm{xi}_{21}=10$ and cross out the second row with the adjusted capacity, requirement and penalty values.
The modified table is as follows:

Origin	Destination						a_{i}	Column Penalty
	1	2		3	4			
1	20		40	17		4 80	0	13
2	24	37		9	7		0	17
	10					30		
3	32	37		20	15		50	17
b_{j}	60	$4 \downarrow$		30	110		240	
Row Penalty	8	15		8	8			

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the third row and the smallest cost in this row is $c_{31}=32$, hence $\mathrm{xi}_{31}=50$ and cross out the third row or first column.
The modified table is as follows:

Origin	Destination						a_{i}	Column Penalty
	1	2		3	4			
1	20	22		17		4	0	13
			40		,	80		
2	24	37		9			0	17
	10					30		
3	32	37		20	15		0	17
	50							
	60	40		30	110		24	
b_{j}								
Row Penalty	8	15		8	8			

The transportation cost corresponding to this choice of basic variables is
$22 * 40+4 * 80+9 * 30+7 * 30+24 * 10+32 * 50=3520$

