Vogel Approximation Method (VAM)

VAM is an improved version of the least cost method that generally produces better solutions. The steps involved in this method are:

Step 1: For each row (column) with strictly positive capacity (requirement), determine a **penalty** by subtracting the **smallest** unit cost element in the row (column) from the next **smallest** unit cost element in the same row (column).

Step 2: Identify the row or column with the **largest penalty** among all the rows and columns. If the penalties corresponding to two or more rows or columns are equal we select the topmost row and the extreme left column.

Step 3: We select X_{ij} as a basic variable if C_{ij} is the **minimum cost** in the row or column with **largest penalty**. We choose the numerical value of X_{ij} as high as possible subject to the row and the column constraints. Depending upon whether a_i or b_j is the smaller of the two ith row or jth column is crossed out.

Step 4: The Step 2 is now performed on the uncrossed-out rows and columns until all the basic variables have been satisfied.

Example

Consider the following transportation problem

Origin	1	2	3	4	ai
1	20	22	17	4	120
2	24	37	9	7	70
3	32	37	20	15	50
bj	60	40	30	110	240

Note: a_i=capacity (supply) b_i=requirement (demand)

Now, compute the penalty for various rows and columns which is shown in the following table:

	Destination					
Origin	1	2	3	4	ai	Column
						Penalty
1	20	22	17	4	120	13
2	24	37	9	7	70	2
3	32	37	20	15	50	5
bj	60	40	30	110	240	
Row Penalty	4	15	8	3		

Look for the highest penalty in the row or column, the highest penalty occurs in the **second column** and the minimum unit cost i.e. c_{ij} in this column is $c_{12}=22$. Hence assign 40 to this cell i.e. $x_{12}=40$ and cross out the second column (since second column was satisfied). This is shown in the following table:

	Destination						
Origin	1	2		3	4	ai	Column
							Penalty
1	20	22	40	17	4	80	13
2	24	37		9	7	70	2
3	32	37		20	15	50	5
bj	60	40		30	110	240	
Row Penalty	4	15		8	3		

The next highest penalty in the uncrossed-out rows and columns is 13 which occur in the **first** row and the minimum unit cost in this row is $c_{14}=4$, hence $x_{14}=80$ and cross out the first row. The modified table is as follows:

		Destination					
Origin	1	2	3	4	ai	Column	
						Penalty	
1	-20		17	4	0	13	
		40		80			
2	24	37	9	7	70	2	
3	32	37	20	15	50	5	
bj	60	40	30	110	240		
Row Penalty	4	15	8	3			

The next highest penalty in the uncrossed-out rows and columns is 8 which occurs in the **third** column and the **minimum cost** in this column is $c_{23}=9$, hence $x_{23}=30$ and cross out the third column with adjusted capacity, requirement and penalty values. The modified table is as follows:

Origin	1	2	3	4	ai	Column
						Penalty
1	-20	22	17	4	0	13
		40		80		
2	24	37	9	7	40	17
			30			
3	32	37	20	15	50	17
b _i	60	40	30	110	240	
		•	Ι			
Row Penalty	8	15	8	8		

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the **second row** and the **smallest cost** in this row is $c_{24}=15$, hence $x_{24}=30$ and cross out the fourth column with the adjusted capacity, requirement and penalty values. The modified table is as follows:

		Destination							
Origin	1	2			3	4		ai	Column
									Penalty
1	20	22		1	7		4	0	13
			40						
2	24	37		ç)	7		10	17
					30		30		
3	32	37		2	0	1:	5	50	17
bj	60	40		3	0	11	0	240	
Row Penalty	8	15			8		8		
		I							

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the **second row** and the **smallest cost** in this row is $c_{21}=24$, hence $x_{121}=10$ and cross out the second row with the adjusted capacity, requirement and penalty values. The modified table is as follows:

		Destir	nation			
Origin	1	2	3	4	ai	Column
						Penalty
1	-20	22	17	4	0	13
		40		80		
2	_24	37	9	7	0	17
	10		30	30		
3	32	37	20	15	50	17
bj	60	40	30	110	240	
Row Penalty	8	15	8	8		

The next highest penalty in the uncrossed-out rows and columns is 17 which occurs in the **third row** and the **smallest cost** in this row is $c_{31}=32$, hence $xi_{31}=50$ and cross out the third row or first column.

The modified table is as follows:

		Desti	nation		
Origin	1	2	3	4	a _i Column
					Penalty
1	20	22	17	4	0 13
		40		80	
2	24	37	9	7	0 17
			30	30	-
3	32	37	20	15	0 17
	50				
			30	110	240
bj	60	40	I	I	
Row Penalty	8	15	8	8	

The transportation cost corresponding to this choice of basic variables is

22*40+4*80+9*30+7*30+24*10+32*50=3520